Contents

FOREWORD ... 3

PART I-PROCEDURES ... 4

PART II-DESCRIPTION OF THE SPECIALIZATION AREAS .. 6

DEFINITIONS: .. 7

A- Specialization Area .. 7
B- Core of a Specialization Area .. 7
C- Background Subjects .. 7
D- Special Subjects .. 7

BIOMEDICAL ENGINEERING ... 8

CIRCUITS AND SYSTEMS ... 10

COMPUTER ENGINEERING ... 12

CONTROL SYSTEMS ... 14

ELECTRICAL MACHINES AND POWER ELECTRONICS ... 16

ELECTROMAGNETICS, ANTENNAS AND MICROWAVES .. 18

ELECTRONICS ... 20

POWER SYSTEMS Ph. D. QUALIFYING EXAMINATIONS ... 23

Old Version ... 23

POWER SYSTEMS Ph. D. QUALIFYING EXAMINATIONS ... 25

New Version ... 25

ROBOTICS Ph. D. QUALIFYING EXAMINATIONS .. 27

Old Version ... 27

ROBOTICS Ph. D. QUALIFYING EXAMINATIONS .. 29

New Version ... 29

SIGNAL PROCESSING Ph. D. QUALIFYING EXAMINATIONS .. 32

Old Version ... 32

SIGNAL PROCESSING Ph. D. QUALIFYING EXAMINATIONS .. 34

New Version ... 34

TELECOMMUNICATIONS ... 37
FOREWORD

This guidebook is intended to provide information on the Ph.D. Qualifying Examination of METU Electrical and Electronics Engineering Department (EEED).

The objective of the EEED doctoral program is to equip doctorate level electrical and electronics engineers to be capable of

a) developing, managing and executing original scientific research independently,

b) analyzing scientific observations with substantially wide and deep perception,

c) determining the necessary steps to reach new synthesis and disseminating the results aiming to make novel contributions to the scientific literature.

The EEED Ph.D. Qualifying Examination assesses the doctoral program student’s technical background and ability in the related field, as well as the abilities in terms of analysis and synthesis of scientific problems and data.

This guidebook includes two parts. Part I presents the information on the qualifying examination procedures. In Part II, definitions of the various terms used in the description of the qualifying examinations are included together with the topics related to each specialization area of EEED.

The Committee for the Ph.D. Qualifying Examinations
PART I-PROCEDURES

1. Ph. D. qualifying examinations (DQE) are held twice yearly, in May and in November.

2. A Ph. D. student must take the DQE in the fifth semester at the latest. Students who fail the DQE in the first attempt are given the examination again in the following semester. Students failing any part of DQE twice are dismissed from the doctoral program.

3. DQE is conducted entirely in English.

4. Students who are going to take the DQE must apply to the Department by the announced application deadline in written form indicating their specialization area together with the special subject for the examination. The application form must be approved by the thesis supervisor of the student. **Late applications are not accepted.** It is the responsibility of the student to follow the related announcements on the EEED web site.

5. DQE is held in two parts: written and oral. In these examinations, students are responsible for the core and one of the special subjects of a specialization area. The core and special subjects of the specialization areas together with the related courses are given in the second part of this guidebook.

6. The times, dates and places of the written qualifying examinations for approved applications are announced by the Committee for the Ph.D. Qualifying Examinations (CQE). The dates and times of the oral qualifying examinations are declared by the coordinator of the examination jury. Students failing in the written part of the examination are not allowed to take the oral part. At least 50.0% success is needed to pass the written part of the examination.

7. The student must prepare a research article related with her/his doctoral thesis study and submit the article to the Department as an attachment to the application form described in item 4. The article must be submitted together with a Turnitin scan report approved by the thesis supervisor. The length of the article should be minimum 4 printed pages (double column, single spaced, 10 pt text font) and should not exceed 6 pages. The format of the manuscript should be compatible with that for IEEE Transactions as described in IEEE Editorial Style Manual for Authors which can be downloaded from https://ieeearchcenter.ieee.org/wp-content/uploads/IEEE_Style_Manual.pdf.

8. The research article described in item 7 must be a single-author paper not co-authored by any other person including the thesis advisor of the student meaning that the article should entirely be prepared by the examinee without receiving any kind of aid including editing.

9. The presented research article is expected to represent the scientific and academic qualifications of the examinee to conduct doctoral thesis research.

10. If the application of the student is approved by CQE, the article is transferred to the members of the examination jury.

11. During the oral examination, the jury asks the student to present her/his research article in approximately 10 minutes. The rehearsal of the presentation before the oral examination is essential and strongly recommended.
12. After the above described presentation, the examination jury assesses
 • Mastery of the thesis research topic,
 • Depth and breadth of the knowledge in the specialization area,
 • Depth and breadth of the knowledge in the background subjects,
 • Analysis, synthesis and research abilities
and reaches a decision at the end of the oral examination. The assessment results for the above listed qualifications are included in the DQE Form in order to justify the decision of the examination jury.

13. The decision of the examination jury (subject to the approval by CQE) is transferred to the Graduate School of Applied and Natural Sciences.

14. Additional important information on CQE should be obtained from the METU web site regarding the Academic Rules and Regulations Governing Graduate Studies.
PART II-DESCRIPTION OF THE SPECIALIZATION AREAS

In Engineering, a “Doctorate of Philosophy (Ph.D.)” work contributes to the advancement of science and technology by developing and implementing original engineering concepts and solutions from the philosophy behind existing scientific and technological knowledge.

The Ph.D. program at the Department of Electrical and Electronics Engineering, METU, aims at conducting leading doctoral research in different areas with potential impacts abroad and nationwide. These impacts are generally in the form of publications in respected scientific journals/conferences and/or patents together with international recognition.

In what follows, a relevant and balanced Ph.D. qualifying examination procedure for Electrical and Electronics Engineering Department Ph.D. students, is given. To establish such a procedure, the Electrical and Electronics Engineering Ph.D. education is analyzed and the vertically integrated courses are grouped as background, core and special subjects. These terms are defined in the following sections and the diagram below is given to clarify the grouping of courses mentioned in this document.
DEFINITIONS:

A- Specialization Area
This term represents a major area of research and practice and is defined by a coherent set of subjects. The specialization areas are identified according to the existing research activities of the department. These areas may be updated when necessary.

Main specialization areas in the Department of Electrical and Electronics Engineering, METU, at present, are identified as follows:

1) Biomedical Engineering
2) Circuits and Systems
3) Computer Engineering
4) Control Systems
5) Electrical Machines and Power Electronics
6) Electromagnetics, Antennas and Microwaves
7) Electronics
8) Power Systems
9) Robotics
10) Signal Processing
11) Telecommunications

B- Core of a Specialization Area
The core defines the fundamentals and essence of a specialization area and is composed of subjects essential to do or follow research in all branches of that specialization area. The core contains at least two graduate courses.

C- Background Subjects
These are the subjects that form the basic knowledge for studying in a specialization area.

Background subjects are composed of

a) Undergraduate courses of Electrical and Electronics Engineering,

b) Courses that do not belong to a specialization area but are nevertheless necessary to help in order to follow and understand fully the concepts in that particular area. These courses typically contain material common to several specialization areas.

D- Special Subjects
Special subjects are those areas of study which are specific or closely related to a specialization area having in depth coverage of the relevant subject.

In the following pages background subjects, core subjects and special subjects of the presently existing specialization areas are described.
Background Subjects:

- **Signal processing:** Discrete-time signals and systems, sampling and reconstruction, linear time invariant systems, fast Fourier transform methods, Fourier analysis of signals using discrete Fourier transform, optimal filtering and linear prediction.

- **Linear System Theory:** Linear spaces, linear transformations, matrix algebra, differential equations. System concept: Dynamical system representation. Linear system time varying and time invariant representation.

Related courses: EE430, EE501

Core Subjects:

- **Modeling and instrumentation for physiological systems:** Electrical Sources and Fields, Introduction to Membrane Biophysics, Action Potentials, Volume Conductor Fields, Electrophysiology of the Heart, Electrocardiography (ECG), electric and magnetic lead fields, Electroencephalography (EEG), Magnetoencephalography (MEG), Electroneurogram (ENG), Electromyogram (EMG), Biopotential electrodes, Biopotential amplifiers, Patient safety, Grounding, Isolation, Shielding, Simple mechanical model of the cardiovascular system (CVS), Measurement of pressure and blood flow, The simple mechanical model of the ventilation, Measurement of respiratory volumes and flow, Models of O₂ and CO₂ transport in the respiratory and cardiovascular system, Models of neural regulation of respiratory system and CVS, Therapeutic and prosthetic devices.

- **Medical imaging:** Image reconstruction with nondiffracting sources in two dimensions, Image reconstruction with nondiffracting sources in three dimensions, Algebraic reconstruction algorithms, Ultrasonic Computed Tomography, Tomographic Imaging with Diffracting Sources, Ultrasonic Reflection Tomography, MRI methods, Flow and Flow-related MRI, Nuclear Tomographic Imaging, New Imaging Modalities.

Related Courses: EE416, EE519, EE515

Special Subjects:

- **Digital Image Processing:** Two-dimensional (2D) signals; discrete Fourier analysis of 2-D signals, 2-D Z-transform and recursive systems, design and implementation of 2-D filters, image enhancement, image coding.

 Related Courses: EE634

- **Physiological Control Systems:** Definition of and examples of hemeostasis, body fluid compartments and compartmental analysis, models of the cardiovascular and respiratory systems, hormonal control mechanisms, neural control mechanisms, regulation of body fluid volumes and electrolytes, mathematical modeling, simulation and identification of physiological systems, associated numerical methods.

 Related Courses: EE518
• **Numerical techniques in Electromagnetics:** Numerical solution of matrix equations and matrix eigenvalue problems, method of moments, finite difference and finite element methods, variational methods, spectral domain approach, the use of these methods in the solution of various antenna and scattering problems, and in the analysis of passive microwave component.

Related Courses: EE522
CIRCUITS AND SYSTEMS
Ph. D. QUALIFYING EXAMINATIONS

Background Subjects:

• **Basic Circuit Theory:** Lumped elements and circuits, resistive circuits, operational amplifiers, dynamic circuits, sinusoidal steady state analysis, complex frequency domain analysis, frequency response.

• **Basic System Theory:** Linear spaces and linear transformations, dynamical system representations, linearity, time-invariance, impulse response, system function, stability.

• **Basic Signal Theory:** Signal classification, convolution, correlation, Fourier series and transform, Laplace and z-transformations, sampling and reconstruction, random signals, stationarity, ergodicity, power spectral density, transmission of random signals through linear systems, introductory stochastic processes.

Related Courses: EE306/EE531, EE430, EE501, EE502.

Core Subjects:

• **Circuit Theory:** Lumped elements and circuits, circuit topology, general circuit analysis, circuit theorems, passivity and stability. Characterizations of one-port and multiport RLCM circuits (positive real rational, bounded real rational and Foster functions and matrices), synthesis of one-port and two-port LC, RC and RL circuits, synthesis of one-port RLCM circuits.

• **Passive, Active and Digital Filters:** Approximation methods, lossless filters (synthesis of lossless two-ports between resistive terminations, frequency transformations), phase and loss equalizers, active RC filters, infinite impulse response and finite impulse response digital filters, finite precision numerical effects, switched capacitor filters.

Related Courses: EE507, EE508, EE601.
Special Subjects:

- **High Frequency Filters and Matching Circuits:** Distributed circuits, distributed element filter design, design of singly and doubly terminated lossless matching circuits.
 Related Course: EE509

- **Multiresolution Signal Analysis:** Fundamentals of signal decompositions, filter banks, wavelets, algorithms and complexity, subband coding.
 Related Course: EE505
COMPUTER ENGINEERING
Ph. D. QUALIFYING EXAMINATIONS

Background Subjects:

• **Logic Design:** Number systems. Boolean algebra. Simplification of Boolean functions. Combinational logic. Synchronous and asynchronous sequential logic.

• **Principles of Computer Architecture:** CPU organization. Arithmetic logic unit

 Related Courses: EE441, EE445.

Core Subjects:

• **Computer Networks:** ISO-OSI models. The medium access sublayer. ALOHA and LAN protocols. IEEE 802.2 and ethernet. Data link layer. Error detection and correction. Data link protocols. The network layer. Routing. Congestion control. Internet working. The transport layer. Internet and Internet tools.

• **Microprocessor:** Microprocessor architecture. microprocessor programming. Peripheral organization. Memory unit. I/O interfacing. Interrupt processed I/O. Direct memory access. Microprocessor based communication.

 Related Courses: EE442, EE444, EE445, EE446, EE447, EE545, EE546.
Special Subjects:

 Related Course: EE542.

 Related Course: EE543.

 Related Course: EE548.

 Related Course: EE586.
CONTROL SYSTEMS
Ph. D. QUALIFYING EXAMINATIONS

Background Subjects:

• **Linear System Theory:** Linear spaces, linear transformations, matrix algebra, differential equations. System concept: Dynamical system representation. Linear system time varying and time invariant representation.

• **Optimization:** Unconstrained nonlinear optimization: Steepest descent, Newton, conjugate gradient and Quasi-Newton type of algorithms. Constrained optimization algorithms. Fundamental theorems of linear optimization and the simplex algorithm.

 Related Courses: EE501, EE553.

Core Subjects:

• **Linear System Analysis:** Dynamical system representations with emphasis to evaluation of system behavior: duality, controllability, observability and their relevant transform techniques.

• **Nonlinear Control Systems:** State space analysis methods: state trajectories and singularity analyses; analytic techniques of periodic phenomena: perturbation methods; equivalent linearization and oscillations in nonlinear feedback systems; stability and predictability of nonlinear systems.

• **Feedback Systems:** design of dynamic compensators; harmonic realization methods and oscillation control in linear and nonlinear feedback systems.

• **Discrete Time Control Systems:** time domain analysis; sampled data systems; stability; observer design; state space design methods, quantization effects.

 Related Courses: EE302, EE402, EE404/EE555, EE502

Special Subjects:

• **Intelligent Control:** Methodologies: Learning Control, Fuzzy Control, Neuro Control, Nonparametric Models of Uncertainty.

 Related Course: EE559.

• **Optimal Control:** Calculus of variations, optimality; Linear Quadratic Optimal Control Problems; Computational approaches.

 Related Course: EE554.
• **Robotics:** Introduction to Robotics: mathematics of manipulators including treestructured and multiarms, inverse kinematics, dynamics, task and path planning. Robot hand gross motion control. Obstacle Avoidance. Hand fine motion control: contact analysis.

 Related Course: EE588.

 Related Course: EE655.

• **Process Control:** Mathematical modeling of fundamental distributed parameter processes. Lumped parameter approximation. Disturbance filtering characteristic of control loops. Fundamental of control of basic processes. Identification, measurement and Instrumentation for the control of industrial processes.

 Related Courses: EE407, EE408.

 Related Courses: EE557, EE558.

 Additional Background: Stochastic processes
Background Subjects:

- **Linear System Theory**: Linear spaces, linear transformations, matrix algebra, differential equations. System concept: Dynamical system representation. Linear system time varying and time invariant representation.

- **Electromechanical Energy Conversion**: Magnetic circuits, stored energy, losses, principles of electromechanical energy conversion. Singly and multiply fed electromechanical systems, DC machines. Rotating fields, induction and synchronous machines.

 Related Courses: EE501, EE553, EE361, EE362

Core Subjects:

- **Electromechanical Energy Conversion and Electrical Drives**: Sizing of electromechanical energy conversion devices, the relationship between losses and size. Performance calculation of electrical machines. Dynamic behavior of electrical machines. DC and AC motor speed control systems and their performance.

- **Power Electronics**: Power switches, protection of power semiconductors, thermal behavior, natural commutation, rectifiers, harmonics, power factor and utility factor for distorted waveforms. Forced commutation, inverters, inverter voltage control, choppers, parallel and series operation of static converters.

 Related Courses: EE463, EE464, EE462, EE563, EE561

Special Subjects:

 Related Course: EE564

- **Special Electrical Machines**: Stepping and switched reluctance motors and their characteristics. Drive circuits for such motors. Calculation of drive-system characteristics at variable speed operating conditions; acceleration, deceleration and control techniques.

 Related Course: EE568
• **Advanced Power Electronics:** Design of forced commutation circuits for inverters and choppers. Switch mode power supplies, buck-boost circuits, unity power factor rectifiers, advanced inverter modulation techniques, inverters as reactive power generators and for harmonic elimination, resonant inverters, resonant DC link inverters, resonant AC link inverters. Cycloconverters, matrix converters.

Related Course: EE569.

Related Course: EE565
ELECTROMAGNETICS, ANTENNAS AND MICROWAVES
Ph. D. QUALIFYING EXAMINATIONS

Background Subjects:

- **Telecommunications:** Analog transmission, modulation techniques, superheterodyne receivers, frequency division multiplexing, sampling process, digital transmission, noise.

- **Signal Processing:** Discrete-time signals and systems, sampling and reconstruction, linear time invariant systems, fast Fourier transform methods, Fourier analysis of signals using discrete Fourier transform, optimal filtering and linear prediction.

- **Linear Algebra:** Linear spaces, linear transformations, Hilbert spaces.

- **Mathematics:** Complex calculus, special functions, partial differential equations.

 Related Courses: EE435, EE436, EE430, EE501, PHYS503.

Core Subjects:

- **Electromagnetic Theory:** Fundamental concepts and theorems. Plane wave functions, cylindrical wave functions, spherical wave functions, wave transformations.

- **Antennas and Propagation:** Antenna parameters, linear antennas, antenna arrays, radiation from slot and aperture antennas, elements of ground wave, tropospheric and ionospheric propagation.

- **Microwaves:** Transmission lines, field and distributed circuit analysis, propagation in waveguiding structures, impedance transformation and broadband matching techniques. Matrix representation of microwave networks, generalized scattering parameters, active and nonlinear microwave systems, microwave equivalent circuits.

- **Numerical Methods:** Numerical solution of matrix equations and matrix eigenvalue problems, method of moments, finite difference and finite elements methods, variational methods, spectral domain approach.

 Related Courses: EE426, EE427, EE522, EE523, EE527.

Special Subjects:

- **Microwaves:** Microwave theory, applications and basic concepts of antenna theory: Scattering parameters, passive reciprocal and nonreciprocal devices, hybrids, electromagnetic resonators, basic microwave filters and periodic structures. Synthesis of lumped and distributed element filters, equivalent circuits and circuit transformations for realization, filter design using prototypes. Field equivalence principles, surface wave antennas, microstrip antennas and arrays, broadband antennas, reflector antennas, horns.

 Related Courses: EE428, EE509, EE525, EE528
• **Antennas and Propagation:** Wave propagation fundamentals, ground wave, tropospheric and ionospheric propagation, Antenna and environmental noise. Field equivalence principles, surface-wave and microstrip antennas, arrays, broadband antennas, reflector antennas, horn antennas. Induced current and aperture integration formulations, the Huygens-Fresnel principle, geometrical optics, plane wave spectrum representation, fast analysis of aperture type antennas, fast and slow wave structures, array analysis and synthesis techniques.

Related Courses: EE524, EE525, EE526.

Additional Background: Optimization: Optimization algorithms such as steepest descent, Newton and Quasi-Newton, fundamental theorems of linear optimization and the simplex algorithm.

Related Course: EE553.

• **Radar Engineering:** Wave propagation fundamentals, ground wave, tropospheric and ionospheric propagation, Antenna and environmental noise. Induced current and aperture integration formulations, the Huygens-Fresnel principle, geometrical optics, plane wave spectrum representation, fast analysis of aperture type antennas, fast and slow wave structures, array analysis and synthesis techniques. Design principles and performance evaluation of pulsed radars, Statistical detection theory and radar cross-section of targets, CW, FM and Doppler radars. SAR and ISAR radars. Radar receiver design, high power microwave generation and amplification.

Related Courses: EE524, EE526, EE625, EE626.

Additional Background: Optimization: Optimization algorithms such as steepest descent, Newton and Quasi-Newton, fundamental theorems of linear optimization and the simplex algorithm.

Related Course: EE553.

• **Electromagnetic Field Theory:** Green's functions in rectangular, cylindrical and spherical coordinates, relation with the solution of EM related inhomogeneous partial differential equations, Watson transformation, the T-Matrix method, vector wave functions, dyadic Green's functions. Asymptotic series, asymptotic evaluation of integrals, Kirchoff and physical optics approximations, Luneberg-Kleine expansion, the eikonal and transport equations, geometrical optics, geometrical theory of diffraction, physical theory of diffraction, applications.

Related Courses: EE521, EE624

• **Optics:** Ray optics, wave optics, beam optics, Fourier optics and photon optics electromagnetic theory of optics and polarization, optical waveguides, fiber optics, optical resonators, optical fiber sensors, optic systems. Application of Fourier theory to the analysis and synthesis of optical imaging and optical data processing systems. Propagation and diffraction of light. Fresnel and Fraunhofer approximations, image formation with coherent and incoherent light, optical data processing and holography.

Related Courses: EE627, EE635.

Additional Background: Optical propagation in fibers, cables, connectors and couplers, principles of optical communication systems. Coherent and non-coherent optical fiber communication systems. Principles of lasers, quantum electronics, laser plasmas, laser optics, laser systems and applications. Optimization algorithms such as steepest descent, Newton and Quasi-Newton, fundamental theorems of linear optimization and the simplex algorithm.

Related Courses: EE438/EE512, EE553, EE614.
ELECTRONICS
Ph. D. QUALIFYING EXAMINATIONS

Background Subjects:

General electronics background including non-linear electronics.

- **Solid-State Electronics:** Basic semiconductor concepts, physics of p-n junction diodes, bipolar junction transistors, field effect transistors, biasing and small signal models, secondary affects, and dynamic models.

- **Analog Electronics:** Amplifiers and frequency response, feedback in amplifiers, differential pair stages, current mirrors, operational amplifiers, and power amplifiers.

- **Digital Electronics:** Large signal transistor models, TTL, ECL, MOS, CMOS logic gates, and regenerative circuits.

- **Nonlinear Electronics:** amplitude modulation and analog multiplication, coupling networks, sinusoidal oscillators, frequency mixers, and converters.

Related Courses: EE412, EE414

Core Subjects:

- **Digital VLSI Design:** Design techniques for rapid implementations of very large-scale integrated (VLSI) circuits, MOS technology and logic, and design for testability.

- **Solid State Devices:** Quantum theory of solids, semiconductor fundamentals and carrier transport, p-n and metal-semiconductor junctions, BJTs and MOSFETs: principles, modeling and advanced issues, heterojunctions and advanced electron devices, optical properties of semiconductors, optical devices: photodetectors, solar cells, light emitting diodes and lasers.

- **Analog Integrated Circuits:** Power supply rejection and voltage references. Noise models and calculations with noise. Equivalent noise generators for bipolar and MOS transistors. Harmonic distortion and inter-modulation. Application of noise and distortion analysis to RF circuit components (low noise amplifiers, mixers and oscillators)

- **Analog VLSI Design:** NMOS and CMOS processes, transistor circuit modeling, current mirrors, operational amplifiers, pseudo analog techniques, continuous time and switched capacitor filters, A/D and D/A conversion, oscillator and phase locked loop design.

Related Courses: EE413, EE419, EE510, EE617
Special Subjects:

- **Solid-State Devices:** III-V compound semiconductor technology. Physics, fabrication, modeling, and integrated circuit applications of III-V compound semiconductor electron devices (MESFETs, MODFETs, and HBTs). Novel heterostructure electron devices. Optoelectronic integrated circuits

 Related Course: EE619

 Related Course: EE527

 Related Course: EE610

 Additional background: Microfabrication processes, characterization and testing methods in semiconductor technology.

 Related Courses: PHYS411 or PHYS412 or PHYS527

 Related Course: EE516

- **Infrared Devices and Systems:** Infrared radiation fundamentals, basics of thermal imaging, characteristics of infrared detectors, photon sensors and uncooled thermal detectors, characterization of infrared systems, industrial and other applications of thermal imaging.

 Related Course: EE514

- **Integrated Circuit Design:** MOS and CMOS circuits and processing technology, circuit characterization and performance estimation. CMOS circuit and logic design, structured design and testing. IC Design methodologies.

 Related Course: EE618

Semiconductor Device Modeling: Energy band theory, Boltzmann Transport Equation and advanced carrier transport models including semi-classical nonstationary transport models, high field transport in semiconductors and properties of interest for device applications, advanced semiconductor device modeling and Monte Carlo technique for device simulation.

Related Course: EE513
• **Beam Electronics:** Lens theory, electron motion, electronic space charge, analytical determination of electrostatic fields, general properties of electrostatic lenses, magnetic electron lenses, electron guns, design considerations for selected beam systems.

 Related Course: EE 613

 Additional Background: Electromagnetic Wave Theory: Fundamental concepts and theorems, plane, cylindrical and spherical wave functions.

 Related Course: EE 523

• **Optoelectronics:** Propagation of rays, spherical waves and Gaussian beams, optical resonators, modulation and detection of optical radiation, noise in optical detection and generation, interaction of light and sound. Lasers, fiber optics, and their applications.

 Related Courses: EE 615, EE 627

 Related Course: EE 614

 Related Courses: EE 438, EE 512
POWER SYSTEMS Ph. D. QUALIFYING EXAMINATIONS
Old Version

Students who are accepted to the PhD program in the 2018-2019 Fall term or later are subject to the ‘New Version’ given next. Students who started the program before the 2018-2019 Fall term may choose any of the versions.

Background Subjects:

- **Computational Methods:** Numerical errors and their estimation, Approximation and interpolation, solutions of linear and nonlinear simultaneous equations, numerical differentiation and integration, introduction to statistical methods.

- **Optimization:** Unconstrained nonlinear optimization: Steepest descent, Newton, conjugate gradient and Quasi-Newton type of algorithms. Constrained optimization algorithms. Fundamental theorems of linear optimization and the simplex algorithm.

- **Linear System Theory:** Linear spaces, linear transformations, matrix algebra, differential equations. System concept: Dynamical system representation. Linear system time varying and time invariant representation.

 Related Courses: EE443, EE553, EE501.

Core Subjects:

- **Power System Analysis:** Structure of electrical power systems, Electrical characteristics of transmission lines, transformers and generators, representation of power system, symmetrical and unsymmetrical faults. Matrix analysis and solutions of power systems, load flow and short circuit analysis, transient stability analysis.

- **Wave Propagation:** Wave equations, modeling of aerial lines and cables, modal analysis of transmission lines, power line carrier communications, solution of transmission line transients using lattice, Fourier transform and time domain methods.

- **Economic Operation of Power Systems:** Modern power system operation, economic dispatch, transmission losses, linear and nonlinear programming techniques, hydrothermal coordination, power system security and rescheduling.

 Related Courses: EE471, EE472, EE571, EE579.
Special Subjects:

• **High Voltage:** Field analysis, electrical breakdown in gases, breakdown in non-uniform field and corona, electrical breakdown of liquids and solids, erosion, insulating materials. Generation and measurement of high AC, DC, and impulse currents, testing transformers and series resonant circuits, sphere and uniform field gaps, dielectric measurements. Principles of insulation coordination, lightning performance. Insulation principles in high voltage equipment, lightning discharges and over voltages, corona effects, electromagnetic interference generated by high voltage systems, insulators, circuit breakers, high voltage transformers and cables. High voltage measurement techniques, high voltage components, impulse current measurements, dielectric measurements, partial discharges.
 Related Courses: EE475, EE476, EE572, EE575, EE576.

• **Distribution and System Protection:** Fundamentals of distribution systems, forecasting methods, primary and secondary distribution, operational characteristics of cables, aerial lines and transformers, overcurrent and thermal protection, economics of distribution systems. Overcurrent protection, differential protection, motor protection. Distance protection, high speed protection, integrated protection.
 Related Courses: EE474, EE478, EE577.

• **Operation and Planning:** Power system planning concepts, generation system and transmission planning. Real time monitoring, principles of computer control systems, contingency and configuration analysis, detection, identification and correction of errors, real-time observability analysis. Modern power system operation and control techniques, unit commitment, interchange of power and energy, dynamic modeling of power systems, regulation, economic dispatch. Computational techniques, power system modeling, large sparse linear systems, vector and parallel processing.
 Related Courses: EE578, EE574, EE671, EE674.

• **Power System Stability and Control:** Power system transient and dynamic stability, multimachine transient stability, speed governors and stabilizers. Modern power system operation and control techniques, dynamic modeling of power systems, regulation, economic dispatch. Computational techniques, power system modeling, large linear systems, vector and parallel processing.
 Related Courses: EE563, EE573, EE671, EE674.
Students who are accepted to the PhD program in the 2018-2019 Fall term or later are subject to the ‘New Version’ given here. Students who started the program before the 2018-2019 Fall term may choose any of the versions.

Background Subjects:

- **Computational Methods**: Numerical errors and their estimation, approximation and interpolation, solutions of linear and nonlinear simultaneous equations, numerical differentiation and integration, introduction to statistical methods.

- **Linear System Theory**: Linear spaces, linear transformations, matrix algebra, differential equations. System concept: Dynamical system representation. Linear system time varying and time invariant representation.

Related Courses: EE443, EE553, EE501.

Core Subjects:

- **Power System Analysis**: Structure of electrical power systems, electrical characteristics of transmission lines, transformers and generators, representation of power system, symmetrical and unsymmetrical faults. Matrix analysis and solutions of power systems, load flow and short circuit analysis, transient stability analysis.

- **Power System Real Time Monitoring and Control**: Power system real time monitoring and control problem, Power system computer control centers, Supervisory Data Acquisition and Control System (SCADA), System control strategies, Control levels. System security concept, Contingency analysis, Configuration analysis, State estimation, Decoupled state estimation methods, Detection, identification and correction of gross measurement errors, Real-time observability analysis.

- **Economic Operation of Power Systems**: Modern power system operation, economic dispatch, transmission losses, linear and nonlinear programming techniques, hydrothermal coordination, power system security and rescheduling.

Related Courses: EE471, EE472, EE574, EE579.
Special Subjects:

- **Operation and Planning:** Power system transient and dynamic stability, speed governors and stabilizers. Power system planning concepts, generation system and transmission planning. Computational techniques, power system modeling, large sparse linear systems, vector and parallel processing.
 Related Courses: EE573, EE578, EE674.

- **High Voltage Techniques:** Field analysis, electrical breakdown in gases, breakdown in non-uniform field and corona, electrical breakdown of liquids and solids, erosion, insulating materials. Generation and measurement of high AC, DC, and impulse currents, testing transformers and series resonant circuits, sphere and uniform field gaps, dielectric measurements. Modeling of aerial lines and cables. Modal analysis of transmission lines. Principles of insulation coordination, lightning performance. Insulation principles in high voltage equipment, lightning discharges and over voltages, corona effects, electromagnetic interference generated by high voltage systems, insulators, circuit breakers, high voltage transformers and cables. High voltage measurement techniques, high voltage components, impulse current measurements, dielectric measurements, partial discharges.
 Related Courses: EE475, EE476, EE571, EE575, EE576.
Students who are accepted to the PhD program in the 2017-2018 Spring term or later are subject to the ‘New Version’ given next. Students who started the program before the 2017-2018 Spring term may choose any of the versions.

Background Subjects:

- **Linear System Theory:** Linear spaces, linear transformations, matrix algebra, differential equations. System concept: Dynamical system representation. Linear time-varying and time-invariant representations.

 Related courses: EE430, EE447, EE501.

Core Subjects:

 Related courses: EE587, EE642, EE584.
Special Subjects:

 Related courses: EE543, EE559, EE586.

• **Robot Hands and Manipulation**: Grasp Jacobian and its use in grasp planning, contact analysis, compliant motion, collision-free wrist path planning, force closure/form closure, linear and nonlinear complementarity problems.

 Related course: EE588.

• **Machine Perception**: Bayes decision theory, parameter estimation and supervised learning, nonparametric techniques, linear discriminant functions, unsupervised learning and clustering, scene analysis, Lisp programming, description matching, goal reduction, natural constraints, solution paths, games, logic, theorem proving, knowledge representation, natural language understanding.

 Related courses: EE583/CENG564, EE586.
Students who are accepted to the PhD program in the 2017-2018 Spring term or later are subject to the ‘New Version’ given here. Students who started the program before the 2017-2018 Spring term may choose any of the versions.

Background Subjects:

• **Discrete-Time Control Systems**: Importance and advantages of discrete time system models in control. Time domain analysis of discrete-time systems. Sampled data systems. Stability; translation of analog design. State space design methods: observer theory, introduction to optimal design methods. Quantization effects. Laboratory work consisting of digital control of linear and nonlinear electromechanical systems; components of a digital control system; simulation models; Proportional-Derivative (PD) position control; lead-compensator speed control; pole-placement based state-space control of nonlinear cart-pendulum system; Optimal Linear Quadratic Regulator (LQR) based state-space control of flexible-joint and inverted pendulum systems; more advanced electromechanical control examples.

• **Analysis of Nonlinear Systems**: Dynamical system models, classification of equilibrium solution. Results on 2-dimensional systems; Poincare-Bendixon theory for limit cycles. Lyapunov theory; definitions of stability and applications to linear and nonlinear feedback systems. Input/output stability; definitions and derivation of frequency response criteria for stability.

Related courses: EE430, EE402, EE406, (EE404 or EE555), EE447

Core Subjects:

• **Optimization:** Mathematical preliminaries on functions of several variables. Convexity and convex functions. Unconstrained minimization problems. Computational algorithms such as steepest descent, Newton and quasi-Newton methods. Constrained minimization problems and Kuhn-Tucker theory. Fundamental theorems of linear optimization and the simplex algorithm.

Related courses: EE501, EE587, EE553, EE585 (old EE780).

Special Subjects:

• **Robot Dynamics and Control:** System representation, stability, controllability, state feedback, state estimation, and realization. Uncertainty models and information representation: types of uncertainties and uncertainty measures. Intelligent control methodologies: learning control, fuzzy control, neuro-control.

Related courses: EE502, EE559

• **Vision and Learning:** Image Formation and Image Sensing, Binary Images and their Geometrical and Topological Properties, Region and Image Segmentation, Edge and Corner Detection, Photometric Stereo, Shape from Shading, Motion Field and Optical Flow, Photogrammetry and Stereo. Machine perception, Bayes decision theory. Parameter estimation and supervised learning; nonparametric techniques. Linear discriminant functions, unsupervised learning and clustering. Scene analysis, applications of pattern recognition.

Related courses: EE583, EE584

Related courses: EE586, EE583

Related courses: EE586, EE588
Students who are accepted to the PhD program in the 2019-2020 Fall term or later are subject to the ‘New Version’ given next. Students who started the program before the 2019-2020 Fall term may choose any of the versions.

Background Subjects:

- **Linear System Theory:** Linear spaces, linear transformations, matrix algebra, differential equations. System concept: Dynamical system representation. Linear system time varying and time invariant representation.

 Related courses: EE430, EE306/EE 531, EE501, EE553.

Core Subjects:

- **Discrete-time Random Signal Processing:** Discrete-time random signals, Linear transformations, Estimation and detection, Homomorphic processing, Optimal linear filtering, Linear Prediction.

- **Spectral Estimation:** Spectral estimation by linear prediction, MA, AR, ARMA modeling, EM method, MUSIC, ESPRIT algorithms.

 Related courses: EE503, EE504, EE603.
Special Subjects:

 Related course: EE604.

 Related course: EE634.

• **Pattern Recognition:** Machine perception. Parameter estimation and supervised learning; nonparametric techniques. Linear discriminant functions. Unsupervised learning and clustering. Scene analysis.
 Related course: EE583.

 Related course: EE633.
SIGNAL PROCESSING Ph. D. QUALIFYING EXAMINATIONS

New Version

Students who are accepted to the PhD program in the 2019-2020 Fall term or later are subject to the ‘New Version’ given here. Students who started the program before the 2019-2020 Fall term may choose any of the versions.

Background Subjects:

 Related courses: EE301, EE 306.

Core Subjects:

 Related courses: EE430, EE503, EE5506, EE501.
Special Subjects:

 Related course: EE504.

 Related course: EE505.

• **Spectral Estimation:** Spectral estimation by linear prediction, MA, AR, ARMA modeling, EM method, MUSIC, ESPRIT algorithms.
 Related course: EE603.

 Related course: EE604.

 Related course: EE633.

 Related course: EE634.

 Related course: EE636.

• **Pattern Recognition:** Machine perception. Parameter estimation and supervised learning; nonparametric techniques. Linear discriminant functions. Unsupervised learning and clustering. Scene analysis.
 Related course: EE583.
• **Vision:** Image Formation and Image Sensing, Calibration, Color, Radiometry and Photometric Stereo, Image Segmentation, Edge and Feature Extraction, Optical Flow and Tracking, Stereo and Structure from motion.
Related course: EE584.

• **Radar Signal Processing:** Target models, clutter models, radar waveforms, ambiguity function, slow-fast time sampling, MTI techniques, clutter rejection, coherent-incoherent processing, detection, CFAR processing.
Related course: EE746.

• **Image Formation:** Multidimensional signals, transforms, and sampling. Propagation and diffraction of waves; optical imaging systems. Fourier transforms in antennas. The ambiguity function; radar imaging systems. Diffraction imaging systems. Reconstruction of images; linear and nonlinear inverse problems in imaging; ill-posedness and regularization. Statistical image reconstruction methods (likelihood and Bayesian methods); analytical and numerical optimization tools; iterative algorithms. Tomographic imaging with different types of tomography data.
Related course: EE798.
Background Subjects:

- **Linear System Theory**: Linear spaces, linear transformations, matrix algebra, differential equations. System concept: Dynamical system representation. Linear system time varying and time invariant representation.

- **Signal Processing**: Sampling and reconstruction. z-transform. Linear time invariant systems. Structures for discrete time systems. Filter design techniques. DFT and FFT. Fourier analysis of signals using DFT.

Related Courses: EE306/EE531, EE430, EE501.

Core Subjects:

- **Source Digitization**: Sampling theory. Quantizers. PCM, DPCM, DM etc.

- **Basic Information and Coding Theory**: Concepts of mutual information and entropy. Channel capacity. Source and channel coding theorems. Block and convolutional codes.

Related Courses: EE435, EE436, EE535, EE536, EE533.
Special Subjects:

 Related course: EE637.

 Related course: EE524.

- **Coding Theory**: Arithmetic of Galois fields. Linear block codes: Cyclic codes-, BCH, RS etc. Convolutional codes. Efficient decoding algorithms for block and convolutional codes. Concatenation and interleaving of codes.

 Related course: EE534.

 Related course: EE538.

 Related course: EE444/EE542.

 Related course: EE412/EE511.

 Related courses: EE427, EE428.