

 EE300 Summer Practice Report

Student Name : Damla ÖZGÜL
Student ID # : 138993-1
SP Date : 12/06/2006 to 07/07/2006
Submission Date : 29/09/2006

SP Company Name : ASELSAN
Company Division : Microwave and System Technologies
 Division, Test Engineering
Company Location : Macunköy, Ankara

 Related Field : Control

Middle East Technical University
Department of Electrical and Electronics Engineering

 1

TABLE OF CONTENT

1. INTRODUCTION

2. DESCRIPTION OF THE COMPANY
2.1 Company Name
2.2 Company Location
2.3 General Description of the Company

• Organizational Structure
• Mission & Vision
• General Objectives
• Number and Duties of Engineers Employed

 2.4 Shareholders of the Company
 2.5 Main Area of Business

 2.6 Brief History of Company

3. RADAR CHARACTERISTICS:
3.1 WHAT IS A RADAR?
3.2 BASIC RADAR TERMS
3.3 WHAT IS RADSIM?
3.4 MAIN PURPOSE OF THE WORK

4. GRAPHING THE RESULTS OF RADSIM WITH VEE
4.1 THE MAIN FUNCTION
4.2 DESIGNING PROCEDURE

4.2.a. ‘data_seperate’ function
4.2.b. ‘b’ function
4.2.c. ‘statistic’ function
4.2.d. ‘setting’ function
4.2.e. ‘sizes_n’ function
4.2.f. ‘min_size’ function
4.2.g. ‘graph’ function
4.2.h. ‘first_setting’ function

 4.3 IMPROVEMENT OF THE PROGRAM
 4.3.a. ‘Buttons’ function

5. GRAPHING THE RESULTS OF RADSIM WITH VISUAL C++
5.1 OPEN FILE BUTTON
5.2 START BUTTON

5.2.a. Reading the file
5.2.b. Seperating the radars’ data
5.2.c. Graphing the radars

5.3 EXIT BUTTON

6. CONCLUSION

7. REFERENCES

 2

1. INTRODUCTION:

I have performed my second year Summer Practice in ASELSAN which is the leading

multi-product electronics company of Turkey. ASELSAN designs, develops and

manufactures modern electronic systems not only for military but also for professional

customers. My practice lasted totally 4 weeks, started at 12.06.2006 and ended in 07.07.2006.

The division where I have performed my work is the Test Engineering Department (TMM)

which is the part of Microwave and System Technologies Division (MST). (I will explain the

divisions of ASELSAN in the description of the company part in vivid detail.) The Test

Engineering Department is also divided into two groups; Radar Electronic War and

Programming. I have performed my SP in Radar Electronic War (TMM-REH) group.

In TMM-REH group, the engineers are working on the advanced computer controlled

automatic testing systems and some simulation software systems. I have worked with one of

this simuation softwares (RADSIM) in which the user can simulate radars. Briefly what I

have done during the SP was to show graphically the results of this simulation software,

obtained from a text file, using the programs Agilent VEE and Visual C++. I can entitle my

work as ‘Projection of Radar Pulses’. For this purpose I have got a general information about

radars and the ASELSAN radar simulation software. Also I have learned the programming

languages while I am doing the project. And finally I have made a presentation of my project

to the TMM-REH group.

In this report, a detailed description of the things that I have done and observed during

the summer practice is included. It begins with the description of the company in which the

organizational structure of the company, main areas of the business and a brief history of the

company are explained. Then the main part of the report which includes the works related

with the ‘Projection of Radar Pulses’ follows the description part of the report. And finally, a

report is concluded with a conclusion part. Also an appendix is included as a reference text.

 3

2. DESCRIPTION OF THE COMPANY

 2.1. COMPANY NAME

ASELSAN Electronic Industries Inc.

 2.2. COMPANY LOCATION
In Ankara ASELSAN has two facilities, which are Macunköy and Akyurt Facilities.

At Macunköy Facilities, Communications (HC) Division and Microwave and System
Technologies (MST) Division are located whereas at Akyurt Facilities, Microelectronics,
Guidance and Electro-Optics (MGEO) Division is located.

Macunköy Facilities

Address: Mehmet Akif Ersoy Mah.16. Cadde No: 16, Macunköy, 06370, Ankara, Türkiye
Phone: (90) 312-592 10 00
Fax: (90) 312-354 13 02 / (90) 312-354 26 69

Akyurt Facilities

Address: P.K. 30, Etlik, 06011, Ankara, Türkiye
Phone: (90) 312-847 53 00
Fax: (90) 312-847 53 20

2.3. GENERAL DESCRIPTION OF THE COMPANY

During the Cyprus War (1974), lots of soldier in Turkish army died because of the

problems in the electronic communication systems. In fact a fighter aircraft from Turkish

Army bombed a Turkish fighter ship. This event was a milepoint in the foundation of

ASELSAN. At the end of 1975, the Turkish Armed Forces Foundation founded ASELSAN to

produce tactical military radios and defense electronic systems for the Turkish Army. In early

1979 following an investment and infrastructure establishment period, ASELSAN started its

production, at Macunköy-Ankara facilities. From the day it was founded up to now,

ASELSAN has expanded its product and customer spectrum, with qualified personnel, high

technology, and knowledge.

 4

ASELSAN is the leading multi-product electronics company of Turkey which works

on designing, developing and manufacturing modern electronic systems for military and

professional customers. According to the field of activities ASELSAN has been organized in

three main divisions:

 1) Communications (HC) Division

 2) Microwave and System Technologies (MST) Division

 3) Microelectronics, Guidance and Electro-Optics (MGEO) Division

The Communications Division and Microwave and System Technologies Division

have high-technology and automated infrastructure in engineering and production at

Macunköy facilities. Electronic production includes surface mount technology, multilayer and

flexible printed circuit boards, mechanical and mould productions, system integration and test

fields. While Communications Division's main product spectrum covers military and

professional communications systems, Microwave and System Technologies Division's

main operations are focused on radar, electronic warfare and command-control systems,

making these divisions evolving technology centers in their fields. Equipped with high

technology engineering, automatic production and test equipment, Microelectronics,

Guidance and Electro-Optics Division manufactures hybrid microelectronic circuits, night

vision equipment, thermal cameras, laser ranger/designators and inertial navigation

systems at Akyurt facilities.

In all divisions, methodologies complying with military standards and ISO-9001 are

successfully applied using computer aided design (CAD), computer aided engineering (CAE)

and computer aided manufacturing (CAM) technologies.

 5

• Organizational Structure:

GENERAL
MANAGER

Administrative Services Finance

Information Systems Human Resources

Microwave & System Microelectronics, Guidance & Communications Division
Technologies Division Electro – Optic Division

• Mission & Vision:

MISSION

 ASELSAN's mission is, by following up advanced technology, to meet the electronic
product and system needs of Turkey in the most favorable price-time-quality conditions to use
this knowledge accumulation in export opportunities, and thus, to obtain continuity and
development under all conditions.

 VISION

 ASELSAN's vision is to become the best in Turkey in its domain by improving the
successful status gained within the country and abroad, and as a straightforward and a reliable
company to obtain customer satisfaction at home and throughout the world.

 6

• General Objectives:

 To create the environment in which the military and civil electronic product and
system needs of our country will be met by technology production.

 To realize exportation in high technology products by achieving the level of
competitive capability both in terms of quality and price in international markets.

 To balance the production between military and professional electronic products and
thus obtain ASELSAN's continuity and development under every condition.

 To provide the necessary potential, to realize the production for the topics that ought
to be national like electronic warfare, encryption and critical software.

 To be a technology center that can produce and design military/ professional electronic
products and systems in the determined operating fields.

 To give primary importance to R&D studies.

 To maintain technology based, planned and healthy growth.

 To obtain maximum customer satisfaction for each product and to comply to
international quality standards.

 To provide a peaceful and secure working environment and in direction of the
company objectives of ASELSAN for the personnel.

 To devote social values and commercial ethics, and to preserve the customer rights
and the natural environment while realizing the company objectives.

• Number and Duties of Engineers Employed:

According to company regulations, we are not allowed to give detailed information

about this topic. However, by December 2005, it is reported that there are 2997 employees,

1230 of which are engineers, working in ASELSAN.

 7

2.4. SHAREHOLDERS OF THE COMPANY

• Shareholders:

Turkish Armed Forces Foundation 84.58 %
AXA OYAK Insurance 0.12 %
Other Shareholders 15.30 %

• Participations:

ASELSAN'S SHARE
SHARE RATE (%)

ROKETSAN 15
ASPİLSAN 1
TÜLOMSAŞ 0.476
ASELSAN-BAKÜ 100
HAVAŞ 0.051
MİKES 72
ASNET 95

 2.5. MAIN AREA OF BUSINESS

ASELSAN is a high technology multiproduct electronics corporation that designs,

develops, produces and services products and systems for military and professional

applications.

 In ASELSAN the latest electronic, electro-optics and mechanical technologies have

been carried out in product development by taking advantage of the computer aided

development and production infrastructure.

• Communications Division

• Microwave and System Technologies Division

• Microelectronics, Guidance and Electro-Optics Division

 8

Since I have performed my SP in Microwave and System Technologies Division, I want

to give brief information about the division and organization of this division.

Briefly in Microwave and System Technologies Division engineers are focused on

radar, electronic warfare and command-control systems which are generally relating with the

term “war”. Therefore the main customer of this division ismilitary services. In this division

engineers deal with designing new technologies for war systems and improving the

technologies that are already used in Turkish Army.

The Microwave and System Technologies Division continues its production and

delivery activities under the following fields:

• Defence and Weapon Systems

• Electronic Warfare and Intelligence

• Command Control Systems

• Radar Systems

• Control and Automation Systems

 In Defence and Weapon Systems, superior capabilities to its customers with its air defence

systems, fire control systems for main battle tanks, fire control systems for self-propelled

weapons are produced. On the other hand, Electronic Warfare and Intelligence part tailors

specific integrated electronic warfare and intelligence systems for military and proffessional

users. In Command and Control & Control and Automation Systems, engineeers develop

Command, Control, Communications, Computers, Intelligence, Surveillance, and

Reconnaissance (C4ISR) systems and equipment to meet the requirements of the tactical

battlefield in the 21st Century. Finally in Radar Systems, ASELSAN manufactures its own

design radars and radar Technologies.

 9

2.7. BRIEF HISTORY OF THE COMPANY

• ASELSAN was established in 1975, to meet the communications electronics

requirements of the Turkish Armed Forces.

• Mr. Dr. M. Hâcim KAMOY has appointed as general manager on January 1976.

• ASELSAN completed its primary investment at Macunköy facilities in 1979 and

within a year, the first production activities were initiated.

• In 1980 military man pack and tank radio production had started and the first delivery

had been realized.

• ASELSAN designed its first hand-held radios and bank alarm systems in 1981.

• 1983 was the year for the first export business. By the end of 1983, ASELSAN had

1,434 personel including 186 engineers.

• ASELSAN enlarged its product spectrum between 1982-1985. TBX exchange

systems, field telephones, computer controlled central systems and laser range finders were

among the new products.

• ASELSAN contributed to the defense power of the Turkish Armed Forces by its

Electronic Warfare and Data Terminals in 1986.

• In 1987 ASELSAN participated in NATO Joint Production Project of Stinger missiles

and started the necessary investment for the production of thick film hybrid circuits.

• In 1988 ASELSAN produced the first avionic equipment: Inertial Navigation Systems

for F-16 aircrafts. ASELSAN quality system was certified in accordance with AQAP-4

standards. Electronic Proximity Fuze contract signed with MOD in this year.

• In 1989 ASELSAN realized the first technology transfer programme to Pakistan.

Combat area tactical radios production started in NRTC facilities in Pakistan under

ASELSAN's licence.

• In 1990 ASELSAN became 47th of the European Defense Electronics Companies.

Field Artillery Battery Fire Control System and TV Transmitter production started.

ASELSAN had 2,000 personnel including 330 engineers.

• In 1991 ASELSAN was organized under 3 divisions as Communications Division,

Microwave and System Technologies Division and Microelectronics, Guidance and Electro-

Optics Division regarding the projects within the field activity. ASELSAN was chosen as the

127th of the world defense companies by International Defense Magazine. ASELSAN, by its

treatment facilities, won the prize of the best company which cares for its environment.

 10

• The most important characteristic of 1992 was the addition of the Radar Systems to

ASELSAN's product spectrum. TQM implementations have accelerated since 1992.

• In 1993 ASELSAN made a big achievement by establishing the Electro-Optics

Technology Center at Akyurt Facilities. ASELSAN quality system was certified in

accordance with ISO 9001 standards.

• In 1994 ASELSAN quality system was revised as AQAP-1 standards. Have Quick

Radio production started.

• In 1995 ASELSAN engineers completed design activities of ASELSAN's first

consumer product, the Mobile Phone. ASELSAN increased its exports to 19 countries. The

Railway Transport System project in Power Electronics area started.

• In 1996 ASELSAN quality system was revised as AQAP-110 standards. TASMUS

contract which will provide a communication system with recent technology to Turkish

Armed Forces was signed.

• In 1997 with its Mobile Phone-1919 which is completely designed by ASELSAN's

engineers; Turkey has taken its position among the first nine countries who designed its own

mobile phone.

• In 1998, ASELSAN manufactured and delivered various new equipment. Thermal

camera systems, thermal weapon sights, thermal imaging equipment and laser designators

were produced for the needs of the Turkish Armed Forces. Design of Automatic Toll

Collection System was completed and production was started. A contract for National

Monitoring System was signed with the General Directorate of Radio Communications. In

addition, ASELSAN has received the "Approved Producer" certificate from the American

Government for the production of LN-93 Inertial Navigation Systems.

• 1999 was a year in which various equipment designed by ASELSAN has gained

considerable success. During the live fire tests of Pedestal Mounted Stinger System, 100%

success was achieved. On the other hand, design of new mobile phone was completed and

Europe Approval was taken. In addition, ASELSAN has received new projects from Turkish

MOD. Contracts have signed for the production of Air Defence Early Warning Command

Control Systems, for the design and production of Electronic Warfare Systems and X-Band

Satellite Communication Systems.

• Mr. Dr. M. Hâcim KAMOY who was the General Manager for 25 years, retired as for

November 2000 and Mr. Necip Kemal BERKMAN has appointed as General Manager.

 11

3. RADAR CHARACTERISTICS:

3.1. WHAT IS A RADAR?

The term ‘radar’ can be defined as an instrument used to detect precipitation by

measuring the strength of the electromagnetic signal reflected back. Actually this term is a

abbreviation of RAdio Detection And Ranging. The function of radar is to locate things by

determining their range and angular position relative to the radar location and orientation. A

radar determines the distance to some object (which we will call the target) by measuring the

time it takes a propagated signal to travel to and from the target at the speed of light.

 Figure 1

 3.2. BASIC RADAR TERMS:

Pulse Width (PW): the duration of a single pulse of a radar

Pulse Repetition Interval (PRI) : the duration between two following consecutive pulses of a

single radar

Time of Arrival (TOA) : the time when a pulse arrives

Effective Radiated Power (ERP) : simply the amplitude of a pulse

 12

 Figure 2

3.3. WHAT IS RADSIM? :

 According to company regulations, I am not allowed to give detailed information

about this topic. However, if I briefly explain RADSIM is a radar simulation program created

by Aselsan TMM-REH engineers. It is a easy to use program, although it has required a

detailed study in the designing procedure. In the program users can create different radars

with different pulse intervals, different starting times etc... Users only fill the blanks which are

related with the radars’ pulses, then the program shows all datas of the radars as a pwd file as

shown in the Figure 3.

 In the ‘pwd’ file shown in Figure 3, it can be understood from the radar no.s that three

radars exist; radar1, radar2 and radar3. All of them have a pulse width of 10usec. The first

radar’s first pulse arrives at t=0, ends at t=10 while the second pulse arrives at t=20. Therefore

the pulse interval, which can be defined as the time between the ending time of a pulse and

the beginning time of the next pulse, is 10usec (=20-10). This is only an example of analysing

the file. All the pulses of three radars can be specified like that. Also from the figure it can be

understood that the amplitude of the first radar is -10dBm, the amplitude of the second radar

is -30dBm and the amplitude of the third radar is -45dBm.

 13

 Figure 3

3.4. MAIN PURPOSE OF THE WORK :

As mentioned in the 3.3 part RADSIM shows the radars’ data in the text format,

however it is hard to understand and visualize in mind. That is, if these radars’ pulses could be

represented graphically , that would be convenient and useful for users of the program.

Actually that is the thing I was supposed to do. I have worked on representing the radars

graphically using the necessary variables of the ‘pwd’ file which are radar number, pulse

width, and time of arrival. In fact simply what I had done was to show the radars’ pulses like

shown in Figure 2 using the ‘pwd’ file in Figure 3. I should have completed this work by

using two software programs; VEE and Visual C++. First I will explain the representation

with VEE

 14

4. GRAPHING THE RESULTS OF RADSIM WITH VEE :

At the beginning of my work I should have made a plan of what I have needed to do.

First, the pwd file should have been read by the program, then since the radars’ datas are

disorganized they should have been separeted, then for each radar the data should have

been considered and they should have been transferred to the graph as dots. Finally for

convenience some buttons can be added. These buttons would satistfy user to see the

radars seperately.

 4.1. THE MAIN FUNCTION :

 Figure 4 – Detailed View

 In Figure 4 the detailed view of the program is shown. This is the main body of the

program and it contains all the functions used in the program. However this is not the view

that the user of the program works on , the user only sees the panel view of the program. An

example of the panel view is shown in Figure 5.

 15

 Figure 5 – Panel View

**Actually when I had completed designing this program, I worked on improving it for

increasing the facilities of the program. Therefore in this report, I will first explain the

designing procedure, then I will mention the improvement of the program with some buttons.

 4.2. DESIGNING PROCEDURE :

• 4.2.a. ‘data_seperate’ function :

As can be seen from the Figure 6 this function also contains some functions. It is more

reasonable to mention these functions before explaining the mechanism of data_seperate

function.

 16

 Figure 6

reading: In this function using the “from file” object the pwd file which shows the

statistical results of RADSIM can be accessed. In other words the pwd file is read from

computer’s disk drives. After that it is available to use in the other functions of VEE. Simply

“from file” object works in that way;

First with the help of ‘File Name Selection’ function the pwd file is choosen by the

user as shown in Figure 7_b.After the file is chosen it is processed in ‘From File’ function. If

this function’s task is examined detailly; first EXECUTE REWIND transaction moves read

pointer to beginning of file. This does not affect data. Then since the first line is composed of

characters, it can be read as a string. But in the future this line will not be useful, because it

contains only the names of the variables.This is the reason why I use READ NULL STR

transaction. Null variable is a special VEE variable.The data read into the null variable is

simply thrown away. Finally with READ TEXT x REAL 64 ARRAY *,8 transaction the

 17

numerical variables are read as a two dimensional array in real numbers format. As in the pwd

file the number of columns is standart, 8, and the number of rows changes the array is defined

as “ARRAY *,8” . The symbol ‘*’ means ‘from beginning to the end’.

 Figure 7_a

 Figure 7_b

 18

numberofradars: As clearly seen from the Figure 8, in this function simply the first

variables of each row in the array are compared and the maximum of them is found with

max(x) function.

 Figure 8

size: Again from the first variables of each row the total size of the array is found.

‘totSize(x)’ function calculates the size of this one dimensional array.

** ‘max(x)’ and ‘totSize(x)’ functions are built-in functions in VEE, these are already

present in the program.

 19

 Figure 9

The mechanism of data_seperate function: First, the result of reading function, which

is an array including all the necessary data related with radars, is declared as ‘dosya1’. From

now on it will be much more easier to reach this array. Then the radar numbers are compared

in that manner, from 1 to the last radar each number is compared with the first variable of

each row of ‘dosya1’. If they are same this row is written in a different array with the help of

collector function.Here the first for range function starts from 1. This number ,1, is sent to

IfThen/Else function. On the other hand, the second for range starts from 0 (this will represent

the first row of dosya1) and ends with the number which is equal to the result of size function

minus 1 (this will represent the last row of dosya1). For example, first for range sents 1 to the

IfThen/Else function, and 5 is sent to the function from second for range. Then a formula like

1==dosya1[5,0] is produced in IfThen/Else function and if it is true the program continues to

run further. If it is wrong it goes back to the second for range and increases the number to 6.

Now IfThen/Else function compares 1 with the first variable of sixth row of dosya1. This

control mechanism continues until the last row. Then the first row increases its data to 2 and

the second for range again starts to sent numbers from 0 to the number corresponds to the last

row. On the other hand another mechanism also works. I said if IfThen/Else function gives

 20

true as a result , the program continues to run further. But, what will happen in the next steps?

Actually this result ensures that this row is sent to the collector . The collector function

combines all of the received data containers into an array. It continues to collect the data until

its XEQ pin is pinged. It is clearly seen in Figure 6 that this pin is pinged when the second for

range completes its work. That is for example for the first radar all rows of dosya1 are

considered and all the rows whose first variable is 1 are collected an array is produced which

only contains the data related with radar1. Finally this array is named with ‘radar1’ with the

help of formula box at the upper side of Figure 6. At the end all radars have their own arrays

which contains only the data of themselves.

** Also in Figure 6 a box called ‘set resolution’ is seen. This allows user to choose the

resolution whatever he wants. In the main function the user determines the resolution and then

in data_seperate function this variable is set and named ‘resolution’. That is after that when

‘resolution’ is seen in a formula, this corresponds to the number which the user determines.

**In Figure 6 the result of numberofradars is also set to ‘no_of_radar’. This will also

helpful to design the program, because from now on ‘no_of_radar’ corresponds the last

radar’s number.

• 4.2.b. ‘b’ function:

Figure 10 shows that ‘b’ function acts like a bridge. It first calls the no_of_radar

variable ,that is, first learns how many radars exists. Then it calls each radars array and

sents them to ‘a’ function respectively. However, it is important that first a radar’s data is

sent to ‘a’ function, then after ‘a function’ has completed its work with this array, next

radar’s data is sent to ‘a’ function.

 21

 Figure 10

 a: Actually this function is a control mechanism. RADSIM can create some radars

that are too long. However this is a big problem for VEE. Later in this report it will be

explained that VEE draws the radars’ graphs by plotting points, but even in a small pulse lots

of points are needed. Since these points are plotted with the help of for range function, it will

take so much time for VEE to run lots of for loops. Therefore, this ‘a’ function controls every

radar’s array. If the size of the array is larger than 500, it cuts the rest of array and as can be

seen in the main function when it cuts the array, a message box is activated. This box satisfies

that in the panel view a warning message appears and informs the user about the lack of some

pulses as in Figure 12 .

 22

.

 Figure 11

 Figure 12

 23

• 4.2.c. ‘statistic’ function:

Simply this function determines the points which will produce the radar’s graphical

representation.As can be seen from Figure 13, first the function calls the array which includes

the first radar’s data and sents it to three different function, simulation, first and last (here

another function, size2, also exists, but it is only a collateral function). In general these

functions specifies the position that each point places.Finally these points are combined in a

function called concatenator and puts in a variable ‘radar1n’. These operations take place for

all radars so that all radars have now the data sufficient to draw the graphs.

 Figure 13

 24

 Now before the main three functions in the statistic function are detaily explained, I

would like to mention ‘size2’ function which is a very useful function for others.

size2: In the statistic function, the first and the last pulses are examined independently

of the other pulses. (The reason of this will be explained in the first and last functions.)

Therefore when considering the size of an array of a radar, two rows should not be

included.So ‘size2’ function is another function that calculates the number which is equal to

the result of size function minus two as in Figure 14.

 Figure 14

**Since a radar’s pulses are composed of straight lines,it would be better to

understand a graphing mechanism for a small length of line before explaining the graphing a

radar’s pulses.

 For different resolutions, the number of points plotted to compose the line will also

differ. For example for the resolution of 0.5usec a pulse which continues for 10usec in the

 25

magnitude of -10dBm, totally 21 points should be plotted on the -10 axis. This can be easily

found with the formula [(10usec/0.5usec)+1]. When these points are represented as an array

of one dimension, the array should be like this;

[-10,-10,-10,…….,-10,-10] (there should be 21 ‘-10’s)

 So for every pulses if an array like this can be created, composing all the arrays the

whole points of a radar can be plotted so that the radar can be represented graphically. That is

the way how things work in statistic function, first,simulation and last functions create one

dimensional arrays and concatenator combines them. Finally long one dimensional array will

have been produced whose names are like ‘radar1n, radar2n….’.

 If the resolution is 1 usec the result will be 11 as seen in Figure 15_a and Figure 15_b.

However the requirement of my work is that the resolution should be 100nsec, that is, to

represent 10usec 101 points should be plotted.

 Figure 15_a

 26

 Figure 15_b

 first: The main purpose of this function is to draw the first pulse of a radar.First, this

function controls whether the first pulse starts at t=0 or not. For example, for the first radar if

the variable corresponding to radar1[0,4] which shows the first pulse’s starting time is 0, then

first the points on the pulse are written on an array,second the points representing ‘OFF’ sign

are written on a different array and finally they will be combined with the help of

concatenator. These are shown at the upper side of Figure 16. In the figure a function called

‘Alloc Real64’ is used. This function creates an array with a size that can be adjusted. On the

other hand, if radar1[0,4] is not 0, that means the first pulse will be later. Therefore first an

array of ‘-80’s (it is the value when the sign is off), second an array composed of the

magnitude values of the pulse, and finally again ‘-80’s (these should continue until the second

pulse) should be produced.Then the concatenator will combine them with an order. First the

input came from A pin, second the input from B, and finally the input from C are taken and

written on a different array.

 27

 Figure 16

simulation: In the simulation function, starting from the second pulse up to the last

pulse all points are written on an array. Finally for example for a radar which has pulses at -15

dBm an array occurs like that [-15,-15....-15,-80,-80.....-80,-15,-15....-15,.............-80,-80].

 last: In this function, the last pulses of radars are drawn by again plotting the

necessary points. As can be seen from Figure 17 at the end of the array the number ‘-80’ is

added, this is because of completing the pulse. When this is added the pulse will have been

done.

 28

 Figure 17

• 4.2.d. ‘setting’ function:

Actually when this program has completed, maximum 5 radars can be represented

graphically. This is the desirable situation. Therefore all the setting relating with graphing will

be done for 5 radars. However what if the user defines less then 5 radars? Then since the data

of the undefined radars is empty, the program will give an error message.That is, it does not

work. To prevent this the setting function has been composed. In this function an array of

size 10 and includes only ‘0’s is set to the radars which has not been defined with RADSIM

by the user. Actually the arrays created for undefined radars are not really important, because

 29

when they are plotted, the settings will be adjusted in such a manner that these undefined

radars will not appear in the graph.

 Figure 18

• 4.2.e. ‘sizes_n’ function:

 This function is also a precaution for future error messages like setting function. Since

sizes of the arrays ‘radar1n,radar2n,....’ are all different, the program will not work and give

an error. Therefore all the radars’ sizes should be equalized. To do that first the sizes of radars

defined in RADSIM should be known.(It is not necessary for undefined radars, because we

have already set their sizes as 10.) Here this function calculates the sizes of the long arrays

 30

which includes all the points related with the radars’ datas. Also it sets the results as a

different variables as seen in Figure 19.

 Figure 19

• 4.2.f. ‘min_size’ function:

As mentioned previous page, for the program not to give an error message all the sizes

of the radars should be same. To do this first, all the radars’ sizes have been identified. Then

the minimum of them should be found. Finally all the radars’ sizes should be fixed to this

size. That is, for defined radars the length of their arrays should be decreased to this size, and

for the undefined radars their sizes, which are actually 10, should be increased to this specific

 31

size.Actually, this function is responsible for finding the size of the shortest array, that is, the

radar’s data with the minimum variables and setting it to a variable called min_of_size.

 Figure 20

• 4.2.g. ‘graph’ function:

In this function, all radars are called and prepared for graphing, that is, their sizes are

equalized in the subfunction called ‘making_same_size’. On the other hand another array

should be produced. This array which will be set as ‘radars’ can be thought as an

initialization. It can be seen in Figure 4(the main function) ‘the radars’ variable is directly sent

to the amplitude-time graph. Actually if it is required for the graph for setting the size of the

figures which will be plotted to the graph. For this purpose an array is produced in the graph

function by Alloc Real64 with a size of the shortest radar data’s size.

 32

In Figure 21 it is seen that all radar’s data are sent to ‘making_same_size’ function

seperately. The reason behind this is that after their sizes are equalized they should be set as

different variables and these new variables should be sent to amplitude-time graph seperately.

Because the graph box takes all the datas and then plots them, rather than plotting one data

after the other.

 Figure 21

making_same_size: After calculating the size of the array came to the function in the

‘sizee’ subfunction it is sent to IfThen/Else function for comparison. After that this function

can be explained in three parts;

1. When the size of radar’s data is equal to min_of_size, that is, this array is

the shortest array, then it is directly sent to junction without any changes.

Junction allows data outputs to be combined so they can be connected to one

data input. every time an input is pinged, that data is sent to its output. So

junction will sent the data came from A pin, which is the unchanged radar

data, to the output.

 33

2. If the size of radar’s data is not equal to min_of_size, then it is compared

with 10 in order to understand whether this radar is defined by the RADSIM

or not. When it is an undefined radar the formula box at the bottom of Figure

22, which has a formula [min_of_size-10] in it, is activated. Finally with the

help of Alloc Real64 and Concatenator function, the rest of the array will be

filled with ‘0’s. At the end we will have an array of ‘0’s with the desired

size.

3. Finally if the radar is a defined radar and the size of the radar’s array is

larger than min_of_size, it is shortened with a simple formula like

A[0:min_of_size-1].This function cuts the variables from min_of_size to the

last, it only takes the variables up to min_of_size.

 Figure 22

 34

• 4.2.h. ‘first_setting’ function:

This function takes the arrays of size of min_of_size for each radar and it sets them to

different variables called ‘radar_1,radar_2,......,radar_5’. In addition, this function calls a

function ‘record_initialization’ and sets its results as TraceSetup.

 Figure 23

Record_initialization: In this function an initialization record is built. This record

includes radar’s numbers, names, pen color type, line type, and point type. Since there are at

most 5 radars, tracenum has variables from 1 to 5. In the name field of the record, the names

of radars such that ‘radar_1,radar_2,....,radar_5’ will be written. Pen field should consist of

numbers that correspond to different color. However, if the radar is not defined in RADSIM,

it should not take place in the graph. So with a ‘IfThen/Else’ function the radar’s data should

be examined as in Figure 24. If the array is composed of all ‘0’s, then it is an undefined radar.

So the number corresponding to the color ‘gray’ should be written in the pen field. If it is a

 35

defined radar, any number can be written on pen field. Here since the number is increased by

4, the radar’s color will be the color corresponding the number which is equal to the radar

number plus 4. (eg. the first radar’s color will be blue which is the reciprocity of 5.) For line

type again the number of undefined and defined radars should be different not to show

undefined radars.On the other hand, point type is not so important. Here we can choose the

number corresponding to no points on the line or the number corresponding to diamonds on

the line, etc...

 Figure 24

Now, since this record is set to a variable called ‘TraceSetup’, TraceSetup is a one

dimensional array with a size of 5 including all the necessary variables to draw the radars’

graphs. So now the designing of the program has been completed. In the main function

‘TraceSetup’ array is also sent to amplitude-time graph such that it identifies the radars’

 36

colors, type of line etc… Now, when the program is started it will shows the radars defined in

RADSIM graphically. For a pwd file shown in Figure 3, the graph will be like in Figure 25.

 Figure 25

 4.3. IMPROVEMENT OF THE PROGRAM :

Although colors of each radar are different, sometimes, especially when the

pulses of the radars are so frequent, radars can be mixed. In other words the graph can

be confusing. However if the user can see only one radar’s graph, it would be much

more convenient for him. In fact, after completing the program, I added a function

called ‘buttons’ to the program. This function had been prepared before by the TMM-

REH engineers. I have only modified it and connected it to the program I designed.

 37

• 4.3.a. ‘Buttons’ function:

In this function, for all radars a cyclic button is produced. At the beginning these are

all assumed to be ON. Then when they are changed to OFF, radars will not appear in the

graph as if their variables were deleted. Then if they are again changed to ON their variables

are all adjusted again and set to TraceSetup’s related variable. For example, if the user make

radar_1 ON after making it OFF, the color of radar_1 will be changed, because earlier the

color corresponding 5 is the color of radar_1, but from now on it is the color corresponding to

1(the pin in the middle of the upper ‘build record’ function which corresponds to pen type is

connected to the number 1 in Figure 26).

 Figure 26

 38

 Figure 27 – when radar_1 & radar_2 are off

 Figure 28 – when all the radars are on again

 39

5. GRAPHING THE RESULTS OF RADSIM WITH VISUAL C++ :

The same procedure used in VEE can also be applied when Visual C++ is used for

graphing; first the file should be chosen, then the data in the file should be read, since the

radars’ data are unordered, they should be seperated, and finally with the help of already

existing DLLs the graph of each radar should be plotted. However, the method will be

different than VEE, because in Visual C++ the code should be written by hand and there is

no predefined functions that help the programmer.

In Visual C++ the workspace contains three parts; class view is the view where the

code is written, on the other hand resource view contains dialog boxes, buttons, icons, etc.. (it

can be considered as visible part of the program for the user) and finally in the file view all

the files that make up the application exist.

At the end when this program will have completed, there will be a dialog window

named ‘new exercise’ like in Figure 29 including some buttons, a scroll bar and some static

texts which simply show the written texts or drawn pictures, in fact they simply paint the

characters on the screen.

 Figure 29

 40

It is convenient to understand how the program works, if each control in the dialog

window and their tasks are understood. For this reason I will explain each button seperately in

the report. However since these buttons control static texts and these texts are only

responsible for showing the data on the screen, I will explain these texts under the related

button’s heading.

 5.1. ‘OPEN FILE’ BUTTON :

First, a button called ‘open file’ has been added to the dialog window of the program

and its ID is chosen as IDC_FILEOPEN. Then, in ClassWizard the activation of the button is

done choosing BN_CLICKED, which means that when this button is clicked one times it is

activated, and adding the function to open the file as in Figure 30.

 Figure 30

When a function is created, inside the function some codes can be written. For

example for this function a code which is needed to open the file page should be written like

shown in Figure 31. In fact this open file button also controls a static text that shows the name

of the file chosen. In Figure 31, the code written also includes this event.

 41

 Figure 31

**In the code a variable called ‘m_sResults’ exists.This is a variable of the static text

defined as a string.

If the code in Figure 31 is examined, it is seen that when the ‘open’ dialog box appears

on the screen like shown in Figure 32, and when the file is chosen this variable is changed to

the chosen file’s name. In my project, since the results of RADSIM is saved as a pwd file, the

user should choose the pwd file which stays under the Radsim file.

 Figure 32

 42

 5.2. ‘START’ BUTTON :

 This button is the main part of the program. When this button is clicked, the file

chosen is read, the radars are seperated, the data of each radar is identified, according the data

the points are specified and finally with the help of two DLL these radars are graphed.

Actually instead of the choice of the file all the work is done under this button’s function.

Since there are several actions under this button, it is much more reasonable to examine these

events under different subheadings.

• 5.2.a. Reading the file:

First of all, the file should be opened. It is suitable to use fopen function like in the

Figure 33. When the file is being read, a problem occurs; although most of the variables in the

pwd file (one example is shown in Figure 33) are numbers and can be read as double numbers,

the first several variables which show the names of the data are composed of characters and

should be read as string. Also since in the modulation part of the radars is written ‘none’,

these should be read as string, too.

 Figure 33

 43

 For the reason stated in the previous page, first the first few variables are read as string

in an array called ‘array’, second since there are six number until ‘none’ these are read as

double and set to a different array called ‘ARRAY’. Then after the word ‘none’ is read as

string and sent to ‘array’, 10.000 which corresponds the unchanged frequency of the radar is

set to ARRAY. As can be understood from the code in Figure 34, until the end of file this

process will continue; first six variable are set to ARRAY, then one to array and one to

ARRAY, later the next row’s first six variable are set to ARRAY……Finally an array of one

dimension , which is called ARRAY, has been produced. It is good to remind that this array

has the variables corresponding to ‘radar no.’s at ‘ARRAY[0], ARRAY[8], ARRAY[16]

……’ , or in other words at the multiples of 8.

//open the file
 FILE *Dosya;
 Dosya=fopen (m_sResults,"r");

//read the file
 double okunan, ARRAY[2000];
 char OkuString[4], array[100];
 int end,k=0;

//note that it will first read the names as a string, then it will read the
values as double numbers except 'none's.
//it will also read 'none's as a string.
//then it will collect only the double numbers in an array named ARRAY

 for (int i=0;i<=11;i++)
 fscanf (Dosya,"%s",array);

 int l=0;

 while(l<=6)
 {
 end=fscanf(Dosya,"%lf ",&okunan);
 ARRAY[k]=okunan;
 k++;
 l++;
 }
 Figure 34

44

 end=fscanf(Dosya,"%s", OkuString);
 end=fscanf(Dosya,"%lf",&okunan);
 ARRAY[k]=okunan;
 k++;

 l=0;
 while (end!=EOF)
 {
 while(l<=6)
 {
 end=fscanf(Dosya,"%lf ",&okunan);
 ARRAY[k]=okunan;
 k++;
 l++;
 }

 l=0;

 end=fscanf(Dosya,"%s ",OkuString);
 end=fscanf(Dosya,"%lf",&okunan);
 ARRAY[k]=okunan;
 k++;
 }

 Figure 34 – continued

 ** In the function the variable ‘k’ is used to calculate the size of the ARRAY.

• 5.2.b. Seperating the radars’ data :

To seperate the radars, their radar numbers should be compared; for example if the

radar number is 1 the next eight variable including itself will be collected in an array

called ‘radar1’. To do this first the variables of the ARRAY which are the multiples of 8

should be compared with 1,2,3,4 and 5. However since the variables are read and set to

the array as double numbers, it will not so easy to look whether the radar number is 1,2.....

or 5. Initially the variable which corresponds to ‘radar no’ should be called and set to

different variable as a string. On the other hand the double version of the number that will

be compared should also be set to another variable (again as a string). After that it should

be examined whether these are the same or not with the ‘compare’ function. For example

 45

as shown in Figure 35 to seperate the first radar’s data from others, at the beginning the

double number which is the variable having the information of ‘radar no’ is set to a

Cstring called ‘x’. At the same time the double number 1.000 is set to another Cstring ‘z’.

Then, if these are the same this variable and the next seven variables are copied from

‘ARRAY’ to ‘radar1’ array. This procedure is same for all the radars. At the end all

radars’ data will have been seperated. For example radar2 array only includes the data

related with the second radar, that is, its first, ninth, seventeenth,..... (that are the variables

that correspond to radar numbers {radar2[0],radar2[8],...}) variables are all 2.000.

//comparing the radar no.s seperate the radar statistics
 char birinci1[50],birinci2[50],birinci3[50],birinci4[50],birinci5[50];
 char ikinci1[50],ikinci2[50],ikinci3[50],ikinci4[50],ikinci5[50];
 double radar1[1000],radarsayisi=0.00;
 double radar2[1000],radar3[1000],radar4[1000],radar5[1000];
 int t,z,y,v=0,q=0,w=0,s=0,h=0;
 for(z=0;;z++)
 {
 y=z*8;
 if(y<k-8)
 {
 radarsayisi++;
 _gcvt(ARRAY[y],5,birinci1);
 _gcvt(1.000,5,ikinci1);
 CString x(birinci1);
 CString z(ikinci1);

 _gcvt(ARRAY[y],5,birinci2);
 _gcvt(2.000,5,ikinci2);
 CString L(birinci2);
 CString N(ikinci2);

 _gcvt(ARRAY[y],5,birinci3);
 _gcvt(3.000,5,ikinci3);
 CString G(birinci3);
 CString S(ikinci3);

 _gcvt(ARRAY[y],5,birinci4);
 _gcvt(4.000,5,ikinci4);
 CString R(birinci4);
 CString T(ikinci4);

 _gcvt(ARRAY[y],5,birinci5);
 _gcvt(5.000,5,ikinci5);
 CString Y(birinci5);
 CString U(ikinci5);

 46

 Figure 35

 if(0==x.Compare(z))
 {
 for (t=y;t<y+8;t++)
 {
 radar1[v]=ARRAY[t];
 v++;
 }
 }
 else if(0==L.Compare(N))
 {
 for (t=y;t<y+8;t++)
 {
 radar2[q]=ARRAY[t];
 q++;
 }
 }
 else if(0==G.Compare(S))
 {
 for (t=y;t<y+8;t++)
 {
 radar3[w]=ARRAY[t];
 w++;
 }
 }
 else if(0==R.Compare(T))
 {
 for (t=y;t<y+8;t++)
 {
 radar4[s]=ARRAY[t];
 s++;
 }
 }
 else if(0==Y.Compare(U))
 {
 for (t=y;t<y+8;t++)
 {
 radar5[h]=ARRAY[t];
 h++;
 }
 }
 }
 else
 break;
 }

 47

• 5.2.c. Graphing the radars :

Actually when it comes graphing, a function called ‘cvLine’ is a helpful. This

function draws straight lines between two points which should be stated as ‘point1’ and

‘point2’. That is, if the first and last points’ coordinates are specified, with the help of

‘cvLine’ function these points can be combined with a straight line. Also this function gives

the programmer the opprotunity of changing the line’s thickness and color.

Since the drawing will be done on a static function, first the static text on the lower

part of the dialog window is created and named as ‘Resim’.Then the boundaries of this text

should be specified with the formula written in the second row of Figure 36.In this program the

size of x-axis is specified as 1000 while the size of y-axis is 100.

When the code is continued to examine, it is seen that one radars variables are set to a

common array called ‘arrayy’, otherwise the code will be too longer. At the same time since it

is desirable that all the radars’ colors are different, the variable ‘r’ which will the color

number is set to different values.

Actually in this part the program works like that;

 First it starts with the first radar, takes the ‘radar1’ array, puts its all variables to

‘arrayy’ and specifies its color as the color corresponding to 255. Also the size of the array is

set to the variable ‘p’. (actually this is useful to finish the graph when the radar is stopped.)

Then ‘arrayy’ is drawn with ‘cvLine’ function. When the first radar’s drawing is completed,

the number will be increased to 2 in for loop. That is now the variables of ‘radar2’ will be set

to ‘arrayy’ and the second radar is drawn. This process will stop when the fifth radar’s

drawing is completed.

** Note that in Figure 36 the for function has not yet finished, it will continue in Figure

37.

 48

Drawing the ‘arrayy’:

 Figure 36

//drawing
 IplImage* Resim = cvCreateImage(cvSize(1000,100), IPL_DEPTH_8U, 4);

//for the different radars set the values of color,length and array values differently
 double A,B,C,D,E=80.00;//h
 int p,r,j;
 double arrayy[1000];

 for(j=1;j<6;j++)
 {
 if(j==1)
 {
 p=v;
 r=255;
 for(i=0;i<1000;i++)
 arrayy[i]=radar1[i];

 }
 else if(j==2)
 {
 p=q;
 r=355;
 for(i=0;i<1000;i++)
 arrayy[i]=radar2[i];
 }
 else if(j==3)
 {
 p=w;
 r=455;
 for(i=0;i<1000;i++)
 arrayy[i]=radar3[i];
 }
 else if(j==4)
 {
 p=s;
 r=555;
 for(i=0;i<1000;i++)
 arrayy[i]=radar4[i];
 }
 else
 {
 p=h;
 r=155;
 for(i=0;i<1000;i++)
 arrayy[i]=radar5[i];
 }

 49

Drawing the ‘arrayy’: In this part of the code, first the radar is examined whether its

first pulse starts at 0 or later. If the time of arrival of the first pulse is not zero, a

horizantal straight line should be drawn at -80dBm (it is the magnitude of the ‘OFF’ state)

until the first pulse starts. Then first the vertical line, second the horizantal line at the

magnitude of the pulse, third again the vertical line which completes the the pulse and

finally a horizantal line at -80dBm which represents the waiting time until the next pulse

are plotted with the help of ‘cvLine’ function and the necessary variables of ‘arrayy’.

Figure 37 shows the code that corresponds the events mentioned above.

 //if the first pulse doesnt arrive at 0, draw the the line until the pulse
 A=00.00;
 C=arrayy[4];
 B=E;
 D=E;

 CvPoint pt1;
 CvPoint pt2;
 pt1.x=A; pt1.y=B;
 pt2.x=C; pt2.y=D;

 if (pt2.x!=0)
 {
 cvLine(Resim, pt1, pt2, CV_RGB(r,255,0), 1, 8);
 }

 //draw the pulses using the first point and the last point of each distinct line
 for(i=4;i<=p-4;i+=8)
 {
 A=arrayy[i];
 C=arrayy[i];
 B=E;
 D=-arrayy[6];//h

 CvPoint pt1;
 CvPoint pt2;
 pt1.x=A; pt1.y=B;
 pt2.x=C; pt2.y=D;
 cvLine(Resim, pt1, pt2, CV_RGB(r,255,0), 1, 8);

 //cvShowImage("RESIM", Resim);

 Figure 37

 50

 A=arrayy[i];
 C=arrayy[i]+arrayy[i-2];
 B=-arrayy[6];//h
 D=-arrayy[6];//h

 pt1.x=A; pt1.y=B;
 pt2.x=C; pt2.y=D;
 cvLine(Resim, pt1, pt2, CV_RGB(r,255,0), 1, 8);

 //cvShowImage("RESIM", Resim);

 A=arrayy[i]+arrayy[i-2];
 C=arrayy[i]+arrayy[i-2];
 B=-arrayy[6];//h
 D=E;

 pt1.x=A; pt1.y=B;
 pt2.x=C; pt2.y=D;
 cvLine(Resim, pt1, pt2, CV_RGB(r,255,0), 1, 8);

 //cvShowImage("RESIM", Resim);

 if(i!=p-4)
 {
 A=arrayy[i]+arrayy[i-2];
 C=arrayy[i+8];
 B=E;
 D=E;

 pt1.x=A; pt1.y=B;
 pt2.x=C; pt2.y=D;
 cvLine(Resim, pt1, pt2, CV_RGB(r,255,0), 1, 8);
 }
 }
 }

 cvShowImage("RESIM", Resim);

 fclose(Dosya);

 cvReleaseImage(&Resim);
}

 Figure 37 – continued

 51

 In addition, graphing some small lines showing the important values in the screen will

be very beneficial for the user. It will provide the user to understand the graph. For this reason

using the same function ‘cvLine’, straight lines in the color of grey are drawn with the code in

Figure 38. In the y-axis, the lines with a size of 2 are drawn. On the other hand in the x-axis

except the lines at the points 100,200,300,.... the size of the lines are 3(=100-97). At that

points the lines are at the size of 10(=100-90).

//draw the lines for coordinates
 int m=1;
 for(i=0;i<=100;i+=10)
 {
 CvPoint pt1;
 CvPoint pt2;
 pt1.x=0; pt1.y=i;
 pt2.x=2; pt2.y=i;

 cvLine(Resim, pt1, pt2, CV_RGB(255,255,255), 1, 8);
 }

 for(i=0;i<=1000;i+=10)
 {
 CvPoint pt1;
 CvPoint pt2;
 pt1.x=i; pt1.y=100;
 pt2.x=i;

 //for 100 and its multiples draw longer lines
 if(i==100*m)
 {
 pt2.y=90;
 m++;
 }
 else
 pt2.y=97;

 Figure 38

 5.3. ‘EXIT’ BUTTON :

 In the dialog window an ‘exit’ function should be placed to close the program. For thia

purpose a button with an ID of EXIT should be activated. That is a function of it should be

 52

created and with a proper code the task of closing the window should be loaded to this button.

Indeed, in VİSUAL C++ this can be done with a simple OnOK() function like seen in Figure

39.

void CNewexerciseDlg::OnExit()
{
 // TODO: Add your control notification handler code here
 OnOK();
}

 Figure 39

 Actually this is the end of the program designed to graph the radars created in the

software RADSIM. How the user runs the program can be repeated like that;

 When the file is chosen as the pwd file and then when the start button is clicked,

the radars will have been represented graphically like in the Figure 40.

 Figure 40

 53

Actually if the same file is represented graphically with VEE as in Figure 41_a & Fİgure

41_b, it is seen that VEE has much more facilities for the user. The user of the program can see

the radars seperately; he can zoom in or out the screen; he can see the points used to draw the

graph…. In fact the graph constructed with Visual C++ is much more limited than VEE.

 Figure 41_a

 Figure 41_b

 54

6. CONCLUSION :

When I learned that I would done my SP in ASELSAN, I was appreciated to be a part

of ASELSAN although it was true for a temporary time. Because I have heard that ASELSAN

is one of the most important companies for the Electrical and Electronic Engineers in Turkey.

In fact when I was doing my SP, I saw that it was true. It has really high standarts of

technology. However in my opinion the reason why it is one of the big companies in Turkey

is the discipline in the company. Indeed all the workers pay really attention to their duty and

all the works are done professionally. In addition, during my SP I had a chance of observing

many things about business life. First of all, I have understood that a big effort is needed to be

a fine engineer. You should always expand your knowledge, in other words you should

improve yourself.

On the other hand, if I have talked about the benefits that I got, first of all while doing

my work I had learned two programming languages. Since I have worked with radars which I

did not have so many information, it was good to learn somethings about radars, their

characteristics and their functions. On the other hand, may be the programmes I have

designed will be used in some works in future. Indeed it is good to know someone will benefit

from your works. May be the best sentence that will explain the benefits of SP is that in the

summer practice you understand that producing new things is a very exciting and interesting

task.

Actually I can really recommend this location to all the students for business life.

Because this company is one step further from most companies in Turkey with its facilities,

technological opportunities,etc. And I believe it will continue to be one of the important

companies of Turkey.

 55

7. REFERENCES :

• http//:wikipedia.org/wiki/Radar

• http// www.agilent.com/find/vee

• “Agilent VEE Pro User’s Guide”, Agilent Technologies, 2004

• “Programming with Visual C++”, David J. Kruglinski, 1998

• “Sams Teach Yourself Visual C++ 6 in 21 days”, Macmillan Computer

Publishing

 56

